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A procedure for deriving molecular interaction energy functions from known equi- 
librium properties of crystals is described. Formic acid is successfully used as a model 
teat system. The known equilibrium properties of formic acid which were employed 
are: the average molar internal energy, the minimum nature of the internal energy, and 
the lack of rotatory motion of each of the molecules in the crystal. The molecular 
interaction energy functions are represented aS pairwise sums of atom-atom terms, 
which in turn are expressed as 1-4-6-12 inverse power expansions of atom-atom distances. 

Empirically derived molecular interaction energy functions, which can reasonably 
account for mechanical and thermal properties of molecular systems, have obvious 
usefulness in both the physical and biological sciences. In this paper we will present 
a procedure for deriving molecular interaction energy functions from known 
equilibrium properties of crystals. Formic acid is used as a model molecular 
system. The known equilibrium properties of formic acid crystals which were 
employed are: the average molar internal energy, the minimum nature of the 
internal energy when the crystal is in its equilibrium geometry, and the lack of 
rotatory motion of each of the molecules in the crystal. 

FOFWULATION OF THE AVERAGE INTERNAL ENERGY OF A CRYSTAL 

We view a molecular crystal as occupying all of space (no boundaries). In this 
view, the average internal energy of a crystal can be calculated as the average 
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internal energy of a unit cell (to be referred to as the zero-th unit cell), which is 
completely surrounded by an infinite number of unit cells. The average molar 
internal energy of a unit cell (6) is represented by 

where II represents the number of molecules per unit cell. & is the molecular 
interaction energy per h-th molecule in the zero-th unit cell, resulting from inter- 
actions between the h-th molecule in the zero-th unit cell with all other molecules 
surrounding it. 

k=all molecules in the crystal except the h-th 

We chose to describe the molecular interaction energy function, dhlc , as the 
pairwise sum of the molecular atom-atom interaction energies existing between 
the atoms of molecule h and those of molecule k. If we represent the molecular 
atom-atom interaction energy function describing the interaction energy between 
atom i of molecule h and atom j of molecule k as & , then 

where I is the total number of atoms in molecule h and m, that in k. (bij in turn is 
expressed as an expansion in intermolecular atom-atom distances, Ri5 , 

$ij = AijRG1 f B,RG4 f CijRG’ + DidRG12a 

The coefficients of the four term expansion are evaluated as follows (coefficients 
are expressed as kcal. a2n where n is either &, 2, 3, or 6): 

Aij = 331.9833qiqj 9 

where qi and qj are referred to as fractional charges located at the atom centers. 

Bij = - + 331.9833(aiqj2 + ajqi’), 

where 01~ is referred to as the polarizability of atom i and q , that of atom j. 
For Cij we used the Slater-Kirkwood formula: 

c,, 2z.z - ; diC$OLj 

m1,2 [ (2g2 + (ZL)““] ’ 
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where e is the charge of one electron; m is the electron mass; fi has its usual meaning. 
Ni is the effective number of valence electrons for atom i and Nj , that for atom j. 

For Dii we used the relationship 

Dij = DiDi 

where Di and Dj are positive scalars associated with their respective atoms. 
In this paper we treat the q’s, (Y’S, and D’s as adjustable parameters, their values 

being determined by the known properties of the crystal. For a detailed discussion 
of the above model for molecular interaction energy functions and for the values 
employed for the “effective number of valence electrons” see [I]. 

THERMAL DATA 

Ideally, the interaction energy of a crystal, which is to be used to derive molecular 
interaction energy functions, should represent the difference in energy at 0°K 
between motionless molecules in their equilibrium crystal geometry and identical 
motionless molecules sufficiently separated so as to have negligible interaction 
energy. At the present time, the residual molar vibrational energy of crystalline 
formic acid at 0°K is not available. We therefore did not take the difference between 
the zero point molar vibrational energies of the crystal and the gas into account. 
The energy we used was obtained by constructing a Born-Haber cycle. 

HCOOH,,iid (0°K) 3 HCOOH,,, (0°K) 

4 I I AH2 
HCOOH,,ird (28 1.4”K) 2 HCOOH,,, (281.4”K) 

At 0°K dH, , the molar enthalpy, is equal to dEoo, the molar internal energy, 
the negative of which we are interested in. dEoo can be set equal to 

AEoo = AH, + AH4 - AH,. 

AH, was evaluated by using the usual quantum statistical equations in which 
we employed the vibrational frequencies presented by Mueller and Spangenberg [2] 
and considered formic acid as a perfect gas. We obtained a value of 2420 Cal/mole. 

To obtain AH, we integrated the molar heat capacity from 15 to 281.4”K 
and applied Debye’s extrapolation from 0 to 15°K. 

AH, = f5 3 . R a 
0 

4’ 5 dT + ,I;.’ C, dT 5 
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where R is the universal gas constant, T is the absolute temperature, and do , the 
Debye theta. The heat capacity measurements of crystalline formic acid between 
15°K and 281.4”K, as determined by Stout and Fisher [3], were employed to 
evaluate the second integral numerically. The Debye 0 was determined from the 
heat capacity measurement at 15°K. The value we obtained for AH3 is 
2 cal + 2557 cal = 2559 Cal/mole. 

The vapor pressure of formic acid at 281.4”K is 17.94 mm of Hg [4]. The vapor 
consists primarily of dimers, the degree of dissociation being 0.09035 [5]. To obtain 
dH4 we employed the formula 

AH, = AH, + AH, + AH, 

where, at 281.4”K, d Ha represents the enthalpy change which occurs when 
0.09035 moles of crystalline formic acid sublimate to monomer; AH, represents 
the enthalpy change which occurs when 0.90935 moles of crystalline formic acid 
sublimate to 0.454825 moles of dimer; AH, represents the enthalpy change which 
occurs when 0.454825 moles of gaseous dimeric formic acid completely dissociate. 
The sublimation enthalpy at 281.4”K, LI H sur, , is equal to AH, + AH, . The value 
employed in this paper for AHsub , 7876 cal./mole, was determined from vapor 
pressure measurements by Coolidge [6]. The dissociation enthalpy, as determined 
by Halford [7], is 14,551 Cal/mole of dimer. Thus AH, is 14,494 Cal/mole. 

Finally, LIE,,~ is evaluated to be 14,633 Cal/mole. The quantity we used for the 
average internal energy of the crystal was rounded off to - 14.6 kcal/mole. 

MECHANICAL DATA 

For the equilibrium geometry of the formic acid crystal we used the x-ray 
crystallographic structure determined at -550°C by Holtzberg et al. [8]. The 
crystallographic C-H and O-H bond lengths and the angles referring them 
to the 0 = C-O structure have not been determined; for these, we used those 
of the dimer determined by electron diffraction [9], i.e., considering the molecule 
planar, C-H is l.lOA, O-H is 0.97 A, H-C = 0 is 123”, and C-O-H is 114”. 
A C-O-H angle of 114” results in linear “hydrogen bonds” in the crystal. 

The unit cell is orthorhombic and contains four molecules. The space group 
is PNA. 

PROCEDURE 

Essentially, the procedure consists of adjusting molecular interaction energy 
functions, expressed in terms of inverse powers of interatomic distances, so as 
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to make them account as much as possible for the known equilibrium properties 
of molecular crystals. A damped oscillation least squares method [lo] is used with 
the coefficients of the molecular interaction energy functions as adjustable 
parameters. 

In particular, treating the formic acid molecule as a rigid structure, the following 
known equilibrium properties were employed: 

(1) The average internal energy of the crystal, 4. 
(2) The minimum nature of r$ when the crystal is in its observed geometry. 
(3) The lack of rotatory motion of each of the molecules in the crystal. 

Considering each of the three properties: 

(I) To accurately evaluate in a feasible manner the average internal energy 
of the crystal, 6, we found it necessary to transform slowly converging lattice 
sums into quickly converging ones. The method we employed to do this is that 
developed by Nijboer and De Wette [l 11. Briefly, $ can be arranged into summable 
components of the type: 

(1) 

where -6,i.k.j is the coefficient of the R2n term describing the interaction of the 
i-th atom of h-th molecule in the zero-th unit cell with the j-th atom of the k-th 
molecule in the crystal. The summation is to be taken over all the atoms in the 
crystal, omitting those of the h-th molecule of the zero-th unit cell. 

Let us place the crystal in a Cartesian coordinate system with the origin located 
at a lattice site such that the basis vectors a I , a2 , a, characterize the zero-th unit 
cell. Let the vector Rn be represented as 

RA = haI + >,a2 + ha, 

where h, , A2 , and h, are positive or negative integers. Let Ri represent the vector 
from the j-th atom in the h-th molecule of the zero-th unit cell to the i-th atom 
in the zero-th unit cell. Then 

with 
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where the prime indicates that the term (0, 0, 0), the zero-th unit cell, is to be 
omitted. The sum over j in the first term of the sum goes over all the atoms in 
each of the unit cells considered. 

RA,i = RA - Ri 

In the second term of the sum, j is taken over all atoms in the zero-th unit cell 
except those in the h-th molecule. Ej is equivalent to Eh,i,k,i . 

The second term in equation (2) is evaluated directly. According to the method 
developed by Nijboer and De Wette, 

(3) 

where P(n) is the gamma function, Qz, x) is the incomplete gamma function, 
yh 4 = m> - m, 4. cj ’ is the sum over all the atoms in the zero-th cell 
except the i-th atom of the h-th molecule. The symbol 6ij is the usual Kronecker 
delta referable to the i-th atom of the h-th molecule. V, is the unit cell volume. 
CA Cj means that the summation is to be taken over all the atoms in all the 
molecules in all unit cells. hA is the usual reciprocal lattice vector. 

For IZ > +, equation (3) is absolutely convergent. For IZ < 8 but positive, 
equation (3) is conditionally convergent. For n = +, X = 0 (X, = X2 = A3 = 0), 
the fourth term of equation (3) is indeterminate since 1 h, 1 = 0 and Cj Ei = 0. 
The evaluation of this term clearly depends on the way in which the limit h,, -+ 0 
is taken. For the crystal lattice under consideration in this paper, a correct way of 
taking this limit leads to the solution 

- $7 J%(@;~ + w2R;2 + ~3R531, 

where w1 = 0.09916, w2 = 0.56802, and wS = 0.33282. Rj, , Rj2, and Rj3 are 
the x, y, and z components of Rj , respectively. 

Of practical significance in evaluating equation (3) is the use of a scaling factor 
so as to make term 1 and term 4 converge at about the same rate. We have found it 
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convenient to use the inverse of the cubic root of the unit cell volume as a scaling 
factor. When the crystal is scaled so that 

ai’ = scale factor * ai i= I,3 

where ai’ represents the i-th basis vector of the slated crystal, we found in every case 
that equation (3) converged with A,, A,, A, going from +3 to -3. The value 
obtained for the scaled crystal must, of course, be multiplied by the scale factor 
raised to the 2n-th power in order to obtain the correct value for the unscaled 
crystal. 

(II) The requirement that $ is a minimum, when the crystal is in its observed 
geometry, is met when all of the following three conditions are satisfied: 

(1) The total force on each molecule in the unit cell must be zero, i.e., 

Fhaj = f Fh.i,i = f (-a~/ach,i.j)equilib,,, = 0 
id i=l 

for each molecule h in the unit cell and for each j, j = x, y, z. Fh,j represents the 
total force experienced by molecule h in the j direction. Fh,i,i represents the force 
exerted on the 6th atom of molecule h in the j direction. Ch,i,j refers to the j-th 
coordinate of the i-th atom in the h-th molecule of the unit cell. The sum is taken 
from 1 to m, where m is the number of atoms in the h-th molecule. 

It may be noted that, for a given size and shape of a unit cell, the set of force 
equations determines the relative positions of the molecules in a unit cell. 

(2) The components of stress for the entire unit cell must be zero. 

sj,k = C 5 (Fh,i.j . ~h,i,k)equilibrium = 0 
h i=l 

for each j, k = X, y, or z. Ch is to be taken over all molecules in the unit cell. 
There are only six independent stress equations instead of nine since S,., = S,,, , 

&, = s,,, , and s,,, = s,,, . 
It may be noted that the stress equations determine the size and shape of the 

unit cell. 

(3) Satisfaction of conditions (1) and (2) insures that $ is an extremum 
but not that it is a minimum. To insure this, it is necessary that each of the charac- 
teristic roots of the matrix 

a2+ 
adi adi (5) 

be greater than zero; di and dj represent independent geometric parameters 
determining the value of 4. 
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The d’s were chosen from the following parameters: 

(a) Four sets, each composed of six parameters. Each of the sets relates 
one of the four molecules in a unit cell to the origin. The six parameters are the 
three polar coordinates and the three Eulerian angles (see [12] for a detailed 
description). 

(b) One set, composed of six parameters, which describes the size and 
shape of the unit cell. The six parameters are the norms of the basis vectors and 
the three independent angles between them. 

For convenience, equation (5) was evaluated numerically for each of the pairs 
of independent parameters. 

(III) To satisfy the requirement that no molecule in the crystal is undergoing 
rotatory motion, it is necessary and sufficient that each molecule in the zero-th 
unit cell have zero torque around each of three orthogonal axes referable to the 
molecule, i.e., the following torque equations must be satisfied: 

Th,i = f (Fh,i.l ’ Ch.i,k - Fh,i,k ’ ~h.i,lh?quilibrium = 0 
i-l 

where j, k, I represent each of the three cyclic permutations of x, y, z, i.e. (x, y, z), 
(v, z, x), and (z, x, v). The sum is over all m atoms in the h-th molecule and the 
equations apply to each of the molecules in the zero-th unit cell. 

TABLE I 

Parameter Values Derived from the Equilibrium Properties of Crystalline Formic Acid 

//OS 
HI--G 

\ 
0,--H, 

Clt q X 10z4 cm3 D* 

HI -0.1734 mooo 25.000 
G 0.3953 2.0490 1789.000 
03 -0.1996 0.4211 135.000 
04 -0.0594 0.0499 271.000 
HE 0.0371 0.2901 3.466 



INTERACTION ENERGY FUNCTIONS 103 

&SULTS 

By treating the q’s, 01’s, and D’s as variable parameters, the molecular interaction 
energy model described in this paper accounted perfectly for the known equilibrium 
properties of crystalline formic acid. The values found for the parameters are 
listed in Table I. 

DISCUSSION 

In the first paper of this series [13], a procedure was presented for shaping 
molecular interaction energy surfaces to desired contours and depths. If so desired, 
this procedure could be incorporated into the one presented in this paper so as 
to insure that the crystal interaction energy surface has as its lowest point the 
known equilibrium internal energy and geometry of the crystal. 

A procedure for empirically deriving interaction energy functions is of little 
practical value unless one can obtain a set of functions which are transferable 
to different molecules. Williams (14) has demonstrated the feasibility of deriving 
one set of interaction energy functions applicable to a wide variety of crystalline 
hydrocarbons. 

The conditionally convergent terms in infinite lattice sums of the R-l type 
(equation (4)) account for the nonspherical shape dependence of these sums. 
It has been customary to set these terms to zero. We have found that they make a 
significant contribution to the total lattice sum for molecules and, an even greater 
contribution to individual atom-atom terms. We will consider these conditionally 
convergent terms in detail and present a general solution for their evaluation in a 
future publication. 
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